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LE'ITER TO THE EDITOR 

Exact solution of a kinetic self-avoiding walk on a fractal 

R Mark Bradley? 
IBM T J Watson Research Center, Yorktown Heights, NY 10598, USA 

Received 24 June 1987 

Abstract. The indefinitely growing self-avoiding walk is solved exactly on a regular fractal, 
the Sierpinski gasket. The fractal dimension D =In 5/ln 2 - 1 differs from the value of D 
for the equilibrium self-avoiding walk on this fractal. 

Beginning with the work of Amit et a1 [l], a variety of kinetic self-avoiding walks 
(SAW) have been studied as models of growing polymer chains [2-81. Approximate 
finite-size studies of the first strictly self-avoiding, non-terminating SAW, the indefinitely 
growing SAW ( IGSAW), yielded the fractal dimension D = 1.76 * 0.01 in two dimensions 
( 2 ~ )  [5], and so suggested that the IGSAW is in a different universality class than the 
equilibrium SAW, which is believed to have D = 3 in ZD [9]. This conclusion is in some 
doubt, however, since early finite-size Monte Carlo work [2,3] suggested that another 
growing SAW, the kinetic growth walk, is in a different universality class than the 
equilibrium SAW. Subsequent analytical [ 10,111 and Monte Carlo [ 121 work has shown 
that in fact the kinetic growth walk slowly crosses over with increasing size to the same 
scaling behaviour found in the equilibrium SAW. Approximate finite-size methods 
cannot rule out the possibility that a slow crossover of this kind could occur in the 
IGSAW as well. 

In this letter I shall solve the IGSAW exactly on a regular fractal, the Sierpinski 
gasket. The fractal dimension I obtain, D = l n  5/ ln2-l ,  differs from the value D =  
In 3/ln 2 found by Ben-Avraham and Havlin [ 131 for the equilibrium SAW on the 
Sierpinski gasket. This result lends increased confidence to the conclusion that the 
IGSAW and the equilibrium SAW are in different universality classes on Euclidean 
lattices. In addition, this work should be relevant to the growth of polymer chains in 
disordered media, since the Sierpinski gasket is often employed as a model of the 
infinite cluster at the percolation threshold [ 141. 

Consider the IGSAW on an infinite Sierpinski gasket (see figure 1). The walk begins 
at one corner of the gasket and at each time step the walker moves to a nearest-neighbour 

/ = 1  1-2  / = 3  

Figure 1. Sierpinski gaskets of order I = 1 ,  2 and 3. The infinite gasket has order I = a. 

t Address after 1 September 1987: Department of Physics, Colorado State University, Fort Collins, CO 80523, 
USA. 
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site which has not been visited previously. Moves which ultimately force the walk to 
terminate or self-intersect are forbidden-each move made must be 'smart'. If two 
smart moves are available, they are given equal weight. 

A Sierpinski gasket of order 1 embedded in the infinite gasket will be called a 
subgasket of order 1. Clearly, once the walk has entered and left a subgasket, it cannot 
re-enter it?. Our goal is to compute the mean number of steps NI the walker makes 
before leaving the subgasket of order 1 that contains its starting point. For large 1 we 
have the scaling behaviour NI - RP, where RI = 2I-l is the side of the subgasket and 
the lattice spacing has been set to 1 .  This is the definition of the fractal dimension D 
employed by Ben-Avraham and Havlin [13]. An altemate fractal dimension D' which 
describes the growth of the mean square radius of gyration of the walk as the number 
of steps is increased has also been computed for the equilibrium SAW [15]. This 
dimension is much more difficult to compute than D for our non-equilibrium problem 
and will not be considered further here. 

To compute N I ,  we must consider the probabilities of four different kinds of events 
that can occur as the walker traverses a subgasket of order 1 after entering at A (see 
figure 2). We let: 

A C' B 

Figure2. The walk enters the order I subgasket ABC at A and exits at B. The subgasket 
of order I can be decomposed into three subgaskets of order I-1, AB'C', A'BC' and 
A'B'C. The four bonds touching B and C that do not belong to the subgasket are also shown. 

P,,J n )  =the probability that the walk exits the subgasket at B after n steps and 

P 2 , 1 ( n )  =the probability that the walk exits the subgasket at B after n steps and 

P3,,( n) =the probability that the walk exits the subgasket at B after n steps, given 

P4,j(n)= the probability that the walk exits the subgasket at B after n steps with 

We represent these events schematically as shown in figure 3. The recursion relations 

does not visit C during this time; 

visits C during this time; 

that C had already been visited before entry at A; 

the constraint that exiting at C is forbidden. 

for the generating functions 
m 

Gi,l(z) = Pi,I(n)z" i = 1 , 2 , 3 , 4  121s 1 
n = O  

are 
G', = (GI  + G2)*+ G:G4+ G1G2G3 
G ; =  GlG2G4+G:G, 
G; = G1G4+ G2G4+ GlG3G4+ GZG: 
G:= GIG4+ G2G4+ GIG:+ G2G3G4. 

t The walker is considered to have entered a subgasket only after it has traversed a bond in the subgasket. 
Similarly, it  exists only when it walks along a bond outside the subgasket. 
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Figure 3. Schematic representation of ( a )  PI, (6)  P 2 ,  (c) P3 and ( d )  P4. 

To illustrate how these equations are obtained, the decomposition of G2,/ is shown 
schematically in figure 4. 

To obtain the asymptotic behaviour of N,, we introduce the quantities 

i = 1 , 2 , 3 , 4  

and note that 

NI = 2(PI,/NlJ+ ~ 2 . I N 2 . 1 )  ( 3 )  

where Pi,l=c:=o P i , / ( n )  = G i J ( l ) .  We first compute the PiJ. Clearly, P3,1= P4,1 = 1. 
Since the walker must eventually leave the gasket of order 1 that contains its starting 
point, 

p1.1 + P2.I = f . (4) 

Setting z = 1 in ( l b )  and applying this result, we obtain P2,1+l = P2,,/2, and hence 

( 5 )  p -1 - 1  
2.1 - 3 2 

since P2,, = b .  Equation (4) then shows that 

P I , /  =&f2-’. 

1 A ,A / 

A 
1 A A  I 

Figure4. Decomposition of G2.,  into G+, . For clarity, the order 1 - 1 subgaskets AB’C’, 
A’BC’ and A’B‘C which make up the order 1 subgasket AEC have been separated slightly. 
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We can now simplify the recursion relations ( 1 )  by dropping terms of order 2-' for 
large I. First, note that for IzI 6 1,  IG2,r(z)l 6 P2,/ = 2-'/3, so G2,, may be set to zero for 
1 >> 1. Subtracting ( Id)  from (IC) gives 

Gi - Gi= (GIG,+ G2G3)( G3 - G4) 

so for I z l s  1 

IGj - G;I (PlP4+ P,P3)IG3 - G4[ = 31G3 - G41. 
Thus G3,[(z) - G4,1(z) is 0(2-') for Ia 1 and IzI 6 1. We can therefore replace G4,, by 
G3,, when I is large, and the recursion relations reduce to 

Differentiating ( 7 )  with respect to z and then setting z = 1,  we obtain recursion 
relations for NI,, and N3,1 ,  valid for 1 >> 1: 

where again terms reduced in magnitude by a factor of 2-' have been omitted. The 
eigenvalues of this linear system are $ and 1 ,  so using (3), ( 5 )  and (6) we obtain 

N/ - ( $ ) I  for I >> 1. 

The fractal dimension is therefore 

D = ln(5/2)/ln 2. 

This is smaller than the fractal dimension of the gasket, DSG = In 3/ln 2, in contrast to 
the equilibrium SAW, which has fractal dimension D = DSG [ 131. 

It is also easy to write down the corrections to this leading-order scaling behaviour. 
For large I 

N, == AR? + BRF-' + C + O( 

where A, B and C are constants. This expression is reminiscent of the scaling ansatz 
made in finite-size studies of the IGSAW on Euclidean lattices [5]. 

In summary, I have shown that the indefinitely growing SAW is in a different 
universality class than the equilibrium SAW on the Sierpinski gasket using an exact 
renormalisation group analysis. This result supports the current belief that these two 
SAW are in different universality classes on 2~ Euclidean lattices. 

I would like to thank P N Strenski for valuable discussions. 
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